		DATE:
	Complex Numbers,	TIME: 1 Hours 30 Minutes
Quality Checkers		MARKS: 25
Only way to fulfill your dreams	SEAT NO):

Note:-

- 1. All Questions are compulsory.
- 2. Numbers on the right indicate full marks.

Section A

Q.1. Select and write the correct answer.

- 1. If $i^2=-1,$ then the sum $i+i^2+i^3+...$ upto 1000 terms is equal to
 - A) 1 B) 1 C) *i* D) 0

2. If
$$-1 + \sqrt{3}$$
 i = re^{i θ} then θ =
A) $-\frac{2\pi}{3}$ B) $\frac{\pi}{3}$
C) $-\frac{\pi}{3}$ D) $\frac{2\pi}{3}$

Q.2. Answer the following.

- Simplify the following and express in the form a + ib (2 + 3i) (1 - 4i)
- ^{2.} Find the value of w^{-105}
- 3. For z = 2 + 3i verify the following : $\overline{z} = z$

Section B Attempt any Four

- Q.3 Find a and b if a + 2b + 2ai = 4 + 6i
- Q.4 Find the modulus and argument of each complex number and express it in the polar form. 6 i (2)
- Q.5 Simplify the following and express in the form a + ib(1 + 3i)² (3 + i)
- Q.6 Find the modulus and argument of each complex number and express it in the polar form. 2i (2)
- Q.7 If w is complex cube root of unity, show that $(2 + w + w^2)^3 (1 3w + w^2)^3 = 65$ (2)
- Q.8 Represent 1 + 2i, 2 i, –3 –2i, –2 + 3i by points in Argand's diagram.

Section C Attempt any Two

- Q.9 If w is complex cube root of unity, show that $(a + b)^2 + (aw + bw^2)^2 + (aw^2 + bw)^2 = 6ab$ (3)
- Q.10 Find the modulus and amplitude for each of the following : -4 4i (3)

Q.11 Prove that
$$(1 + i)^4 \times (1 + \frac{1}{i}) = 16$$

(3)

(4)

(2)

(2)

(2)

(3)

Section D Attempt any One

Q.12	Solve the following quadratic equations : $x^2 - (2 + i)x - (1 - 7i) = 0$	(4)
------	---	-----

Q.13 Express the following in the form a + ib, a, b \in R, using De Moviver's theorem. (4) $(1 - i)^5$